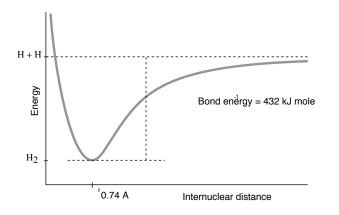

## **Chemical Bonding Practice Items**

- 1. Covalent bonds
  - A. are a kind of Van der Waals force.
  - **B.** involve the sharing of electrons between atoms.
  - **C.** consist of the electrostatic attraction between ions.
  - **D.** concentrate the greatest electron density outside the internuclear axis.
- **2.** Ionic bonding occurs in the following pair of elements:
  - A. C and Cl
  - **B.** Cu and I
  - C. Mg and Cl
  - **D.** C and S
- **3.** Isoelectric species have the same electron configuration. Which of the following does not belong in the same group of isolectric species with the others?
  - A. O<sup>2-</sup>
  - **B.** F<sup>−</sup>
  - C. Na<sup>+</sup>
  - **D.** Ar
- 4. Sulfur can form a transargononic compound with fluorine,  $SF_6$ , in which the atomic orbitals of sulfur hybridize to form six sp<sup>3</sup>d<sup>2</sup> orbitals. What is the shape of the molecule?
  - A. trigonal bipyramidal
  - B. tetrahedral
  - C. octahedral
  - **D.** planar

- 5. Two Lewis structures may be drawn for  $SO_2$  that obey the octet rule. Bond lengths and bond energies in  $SO_2$ 
  - **A.** correspond to a sulfur-oxygen single bond and a sulfur-oxygen double bond.
  - **B.** lie between those expected for sulfur-oxygen double and triple bonds.
  - **C.** demonstrate periodic fluctuation between single and double bonds.
  - **D.** are identical for the two sulfur-oxygen bonds.
- 6. The H–O–H bond angle in water equals
  - **A.** 104.5°
  - **B.** 109.5°
  - **C.** 120°
  - **D.** 180°
- 7. Which of the following molecules is linear?
  - A. H<sub>2</sub>O
  - **B.**  $NO_2$
  - C.  $SO_2$
  - **D.** CO<sub>2</sub>
- 8. Bonding in ozone  $(O_3)$  can be expressed as a resonance hybrid.




The angle formed by the three oxygens in ozone is nearest to

| A. | 109° |
|----|------|
| B. | 117° |
| C. | 120° |
| D. | 180° |

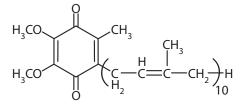
- **9.** Which of the following reactions at standard temperature and 0.01 atm between atomic species would be most exothermic?
  - **A.**  $H(g) + F(g) \longrightarrow HF(g)$
  - **B.**  $H(g) + Cl(g) \longrightarrow HCl(g)$
  - **C.**  $H(g) + Br(g) \longrightarrow HBr(g)$
  - **D.**  $H(g) + I(g) \longrightarrow HI(g)$

The energy diagram for the formation of  $H_2$  below pertains to questions 10 and 11.

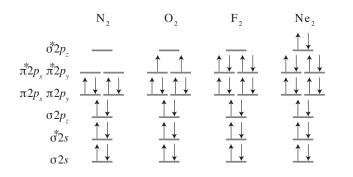


- 10. From the diagram we can conclude that
  - **A.** at distances less than 0.74Å the repulsion between the electrons increases sharply.
  - **B.** breaking the bonds of hydrogen molecules releases 432 kJ/mole of energy.
  - **C.** 0.74Å is the  $H_2$  bond distance.
  - **D.** when two hydrogens share a pair of electrons, the spins of the electrons become paired.

- **11.** Suppose that instead of  $H_2$  formation the diagram showed formation of  $N_2$ .
  - **A.** The internuclear distance at the curve minimum would be lower.
  - **B.** The depth of the energy well would be greater.
  - C. There would be three minima.
  - **D.** The energy would be greatest for large values of internuclear distance.
- 12. Determine the kind of hybrid orbitals used by sulfur in  $SF_4$


$$\mathbf{A.} \quad sp^2$$

**B.**  $sp^3$ 


**C.**  $sp^{3}d$ 

**D.** 
$$sp^3d^2$$

- How many carbons in ubiquinone, pictured below, are *sp*<sup>2</sup> hybridized?
  - **A.** 6
  - **B.** 8
  - **C.** 26
  - **D.** 28



The following molecular orbital electron configurations pertain to questions 14 - 16:



- **14.** Which molecule is shown by its molecular orbital electron configuration to have a bond order of 1?
  - **A.** N<sub>2</sub>
  - **B.** O<sub>2</sub>
  - **C.** F<sub>2</sub>
  - **D.**  $Ne_2$
- **15.** Which molecule is shown by its molecular orbital electron to be unstable?
  - **A.** N<sub>2</sub>
  - **B.** O<sub>2</sub>
  - **C.** F<sub>2</sub>
  - D. Ne<sub>2</sub>
- **16.** Which molecule is shown by its molecular orbital electron configuration to be paramagnetic?
  - **A.** N<sub>2</sub>
  - **B.** O<sub>2</sub>
  - **C.** F<sub>2</sub>
  - **D.**  $Ne_2$

