Newton's Laws Practice Items

- 1. A moving body with no net forces acting upon it will...
 - A. come to rest.
 - **B.** exist in static equilibrium.
 - C. continue moving with constant velocity.
 - **D.** undergo a constant positive acceleration.
- 2. A block is at rest on an inclined plane. As the angle of incline is increased beyond the point at which the block begins to slide...
 - A. the normal force upon the block decreases.
 - **B.** the force of friction increases.
 - **C.** the force required to prevent sliding of the block decreases.
 - **D.** the weight of the block decreases.
- 3. A man (mass 150 kg) is standing on a scale in an elevator which is dropping free fall. According to the scale, how much does he weigh? $g = 10 \text{ m/s}^2$
 - **A.** 0 N
 - **B.** 15 N
 - **C.** 150 N
 - **D.** 1500 N
- **4.** The force compelling an object to remain in uniform circular motion is called
 - A. the centripetal force
 - **B.** the reaction force
 - C. the centrifugal force
 - **D.** the equatorial force

- 5. A man is standing on a scale in an elevator which is accelerating downwards at 6 m/s². The scale registers 400 N. How much would the man normally weigh?
 - **A.** 100 N
 - **B.** 150 N
 - **C.** 800 N
 - **D.** 1000 N
- 6. A 2 kg object travels at 5 m/s in a certain direction. An unknown force is applied to the object along that same direction. Ten seconds of constant application results in the object traveling at the speed of 25 m/s. What is the magnitude of the unknown force?
 - **A.** 1 N **B.** 2.5 N **C.** 4 N
 - **D.** 10 N
- 7. Which of the following combinations of materials for the block and plane below would prevent the block from freely sliding under the influence of gravity?
 - **A.** wood on wood (ms = .3)
 - **B.** steel on concrete (ms = .9)
 - **C.** steel on steel (ms = .7)
 - **D.** more than one of the above are correct

- 8. A 100kg mass is suspended from two spring scales connected together as shown in the figure at right. The scales are of negligible weight. In this arrangement
 - A. each scale reads 50N.
 - **B.** each scale reads 500N.
 - C. each scale reads 1000N.
 - **D.** the top scale reads 1000N and the bottom reads zero.

- 9. The weight of a 20kg mass is supported as shown in the figure below. Three cords of negligible weight are joined at a knot. What is the magnitude of tension T_1 ?
 - **A.** 14N
 - **B.** 20N
 - **C.** 200N
 - **D.** 280N

- 10. The units of electric field in the SI system may be referred to as either volts per meter or, equivalently, as newtons per coulomb. At the location of particle B depicted in the figure below, the electric field of particle A has a magnitude of 3.0×10^{-5} V/m, and the electric field of particle C has a magnitude of 4.0×10^{-5} V/m. Particle B possesses a charge of 1.5×10^{-6} C. What is the magnitude of the net force on particle B ?
 - **A.** $1.1 \times 10^{-11} \,\mathrm{N}$
 - **B.** $1.4 \times 10^{-11} \,\mathrm{N}$
 - **C.** 5.0×10^{-11} N
 - **D.** 7.5×10^{-11} N

- 11. A proton (mass = 1.67×10^{-27} kg), moving at a speed of 3.0×10^5 m/s in the vicinity of an alpha particle (mass = 6.64×10^{-27} kg) exerts a force of 6.7×10^{-19} N on the alpha particle. What force does the alpha particle exert on the proton?
 - **A.** 6.7×10^{-19} N
 - **B.** 1.3×10^{-18} N
 - **C.** 2.7×10^{-18} N
 - **D.** cannot be determined without also knowing the speed of the alpha particle

- 12. Neglecting friction and the mass of the pulley, what is the acceleration of the mass m_2 in the apparatus below?
 - **A.** 0 m/s^2
 - **B.** 5 m/s^2 in the downward direction
 - **C.** 5 m/s^2 in the upward direction
 - **D.** 10 m/s^2 in the downward direction

13. Traveling on a flat roadway an automobile speeds around a curve of radius *R*. The coefficient of kinetic friction between the car's tires and the roadway is μ_k , and the coefficient of static friction is μ_s . Which best expresses the maximum speed v_{max} at which the car can travel without slipping?

B.
$$\sqrt{\frac{\mu_k NR}{m}}$$

C.
$$\frac{\mu_s NR}{m}$$

D.
$$\frac{\mu_k NR}{m}$$

- 14. Within an apparatus kept at near absolute zero temperature, an alpha particle, ¹/₂He²⁺, and an ionized helium-3 nucleus, ¹/₂He²⁺, begin moving at the same moment in time from a position near the surface of the positive plate in the parallel plate capacitor shown below. Which particle strikes the far plate first?
 - **A.** ${}^{3}_{2}\text{He}^{2+}$
 - **B.** ${}^{4}_{2}$ He²⁺
 - C. They will both strike at the same time.
 - **D.** Neither particle begins to move.

